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Abstract 

Genetic algorithms have been investigated as computa- 
tional tools for the de novo phasing of low-resolution 
X-ray diffraction data from crystals of icosahedral 
viruses. Without advance knowledge of the shape of 
the virus and only approximate knowledge of its size, 
the virus can be modeled as the symmetry expansion of 
a short list of nearly tetrahedrally arranged lattice points 
which coarsely, but uniformly, sample the icosahedrally 
unique volume. The number of lattice points depends 
on an estimate of the non-redundant information content 
at the working resolution limit. This parameterization 
permits a simple matrix formulation of the model 
evaluation calculation, resulting in a highly efficient 
survey of the space of possible models. Initially, one 
bit per parameter is sufficient, since the assignment of 
ones and zeros to the lattice points yields a physically 
reasonable low-resolution image of the virus. The best 
candidate solutions identified by the survey are refined 
to relax the constraints imposed by the coarseness of 
the modeling, and then trials whose intensity-based 
statistics are comparatively good in all resolution ranges 
are chosen. This yields an acceptable starting point 
for symmetry-based direct phase extension about half 
the time. Improving efficiency by incorporating the 
selection criterion directly into the genetic algorithm's 
fitness function is discussed. 

I. Introduction 

The goal of this work is to develop the capability to 
determine phases for viruses and viral components which 
possess a high degree of internal symmetry, without 
relying on the availability of previously determined 
homologous structures or requiring isomorphous heavy- 
atom derivatives. Screening for heavy atoms in virus 
crystals is particularly laborious, because millions of 
reflections must be collected to determine if a candidate 
compound provides useful phase information. 

Although collecting virus data is difficult, there are 
compensating computational advantages which arise 
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from the high degree of non-crystallographic symmetry 
of the virus, as foreseen by Main & Rossmann (1966). 
Once a set of sufficiently non-random preliminary 
phases have been obtained, a high degree of non- 
crystallographic symmetry (NCS), such as that in 
icosahedral viruses, provides powerful constraints on the 
amplitudes and phases of the data, which are remarkably 
useful for refining initial phase estimates. 

Provided that the amount of detail in the image 
is limited, the most efficient way to model physical 
measurements from highly symmetric viruses often in- 
volves describing the virus in terms of a small set 
of symmetry-consistent basis functions. Outside of a 
crystallographic context, noteworthy developments in- 
clude the successful use of icosahedral harmonics (see 
Finch & Holmes, 1967) for the description of viruses 
in solution scattering experiments by Jack & Harrison 
(1975) and the use of 522 symmetric basis functions in 
the reconstruction of icosahedral viruses from electron 
micrographs (Crowther, 1971). In those applications, 
only the icosahedral symmetry is relevant, and a single 
set of analytic functions forms an appropriate basis set 
for the description of a variety of icosahedral particles. 

In a crystallographic context, however, both the crys- 
tallographic and NCS operators have to be taken into 
account. Crowther (1967, 1969) suggested a highly ef- 
ficient reciprocal-space matrix formulation of the NCS 
phase-refinement problem, explicitly involving the con- 
struction of mutually orthogonal eigendensities. In that 
formulation, each independent variable is the coefficient 
of an eigenvector of the NCS-averaging operator defined 
for a particular arrangement of symmetry-related copies 
in a specific unit cell. This approach reduces the degrees 
of freedom of the problem to the minimum number re- 
quired to describe the non-redundant information content 
of the resolution-limited discrete Fourier transform of 
the unit-cell contents. 

While highly efficient at low resolution, the com- 
putational expense of Crowther's formulation increases 
dramatically with increasing resolution, making it un- 
suitable for high,resolution applications. The current 
widespread use of NCS constraints in high-resolution 
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applications derives from the seminal insight of Bricogne 
(1974), who noted that the expensive matrix multipli- 
cation step required in each iteration of Crowther's 
successive projection refinement algorithm could be re- 
placed by a formally equivalent, but orders of magnitude 
less expensive, averaging of symmetry-related electron- 
density values in direct space. 

Direct phase extension is the most dramatic appli- 
cation of the NCS phase-constraint procedure thus far. 
When phase estimates are available only for the lower 
resolution data, NCS can be used for extending those 
phases directly to higher resolution, provided that the 
upper resolution limit of the data is expanded sufficiently 
slowly. This phase-extension technique was utilized in 
low-resolution structure determinations by Argos, Ford 
& Rossmann (1975), Unge et al. (1980) and Rayment, 
Baker, Caspar & Murakami (1982). It was applied in a 
high-resolution structure determination by Wim Hol and 
coworkers (Gaykema, Volbeda & Hol, 1985) and was 
applied soon thereafter to the determination of high- 
resolution icosahedral virus structures by Rossmann et 
al. (1985) and Hogle, Chow & Filman (1985). Since 
that time, the determination of many additional virus 
structures has involved a direct phase-extension step, 
usually starting with phase estimates in the 5-8 A range, 
but occasionally starting with phase estimates no higher 
than 13 A (Valeghrd, Liljas, Fridborg & Unge, 1990). 
Direct extension over an even wider resolution range is 
generally expected to be feasible (Tsao et al. ,  1992) and 
would play a critical role in the ab initio determination 
of virus structures, assuming that sufficiently accurate 
low-resolution phases were available. 

Recent ideas for the phasing of low-resolution virus 
data have focused on the possibility of generating phases 
de novo (Tsao, Chapman & Rossmann, 1992), the incor- 
poration of information from solution scattering (Chap- 
man, Tsao & Rossmann, 1992), or on the use of elec- 
tron micrographs as sources of low-resolution phases 
(McKenna, Xia, Willingmann, Ilag & Rossmann, 1992). 
Previously, the inclusion of electron-microscopy (EM) 
information has been qualitative, guiding the modeling 
of polyoma as an icosahedral arrangement of simple 
geometric solids (Rayment, 1983), or suggesting approx- 
imate shapes for envelopes used in subsequent high- 
resolution 'averaging'. In the past, EM-based phases and 
envelopes have proven useful, both alone (Jack, Harrison 
& Crowther, 1975) and in combination with heavy- 
atom information (Valeg~rd et al. ,  1990; Tsao, Chapman, 
Wu et al. ,  1992; McKenna et al. ,  1992), or as a guide 
to the rigid-body placement of previously determined 
molecular fragments (e.g. Cheng et al. ,  1994; Stewart, 
Fuller & Burnett, 1993), though such low-resolution 
information has not yet proven to be sufficient by itself. 

One attractive concept for the calculation of phases 
de novo involves applying NCS constraints to randomly 
generated sets of starting phases (McKenna et al. ,  1992). 
This is widely believed to be possible if the data and 

envelopes were at atomic resolution, but it has not yet 
proved to be practical given the limits in the achiev- 
able quality and resolution of virus data. In practice, 
refinement from a random starting point (such as that 
provided by a non-isomorphous heavy-atom derivative) 
divides the reciprocal sphere into a patchwork of local 
areas, each of which contains phases that are mutually 
consistent with respect to the sign, hand and origin of 
the implicitly specified structure, but which are globally 
inconsistent with one another (see, for example, Tsao, 
Chapman & Rossmann, 1992). Direct phase extension 
usually has failed when too broad a resolution step was 
attempted, primarily because the barriers between these 
mutually inconsistent regions have proven impervious 
to continued refinement. 

Recently, a promising purely computational approach 
was undertaken using atomic model-based synthetic data 
for canine parvovirus. Starting with a model of a hard 
uniform spherical shell with adjustable radii (Chapman 
et al. ,  1992), an NCS-based phase refinement and direct 
extension were attempted (Tsao, Chapman & Rossmann, 
1992). Because parvovirus crystallized with none of the 
icosahedral twofold axes parallel with crystallographic 
twofolds, it was conceivable for the asymmetry of the 
data to break the spherical symmetry imposed by such a 
simple model. Not surprisingly, broad shells of correctly 
phased data were generated, interleaved with shells 
corresponding to the Babinet opposite of the structure. 
At that point, the outermost data provided a large enough 
set of self-consistent phases for direct phase extension 
to work in an idealized calculation, though unfortunately 
not in an actual previous attempt to solve the virus 
structure de novo. Paradoxically, the same factors which 
make it possible to break the symmetry of a spherical 
phasing model in this space group also make it difficult 
to position the center of the virus accurately enough for 
successful direct phasing. 

Clearly, there is a need to develop an efficient com- 
putational paradigm for the direct-space modeling of 
icosahedral viruses, to be used both as a means to explore 
the space of possible low-resolution crystal structures 
automatically, and to facilitate the incorporation of EM 
information. The procedure described in this manuscript 
involves modeling the icosahedrally unique volume of 
the virus with a small set of immovable lattice points 
distributed as uniformly as possible, subject to the limita- 
tion that the number of such lattice points cannot exceed 
the total information content of the discrete Fourier 
transform at the current resolution limit. (This treat- 
ment makes every possible model consistent with the 
known symmetry, and makes all of the basis functions 
mutually orthogonal eigendensities of the appropriate 
NCS-averaging operator.) Because each parameter of the 
model represents the average electron-density value in 
one particular vicinity, simply turning the density 'on' 
or 'off' in the earliest stages of the procedure yields 
a physically reasonable low-resolution portrayal of the 



STEPHEN T. MILLER, JAMES M. HOGLE AND DAVID J. FILMAN 237 

virus. This treatment facilitates efficient refinement from 
multiple random starting points, using genetic algorithms 
(GA's) (Holland, 1975). These are computational survey 
methods enjoying what is effectively a built-in though 
very approximate history mechanism. In addition, a com- 
putational strategy has been developed for circumventing 
the most serious effects of series termination, both in 
low-resolution phase refinement, and in the direct phase- 
extension steps which are expected to follow. 

A successful computational exercise using perfect 
data at 24 A resolution is included to suggest the feasibil- 
ity of this approach. This represents both an achievable 
resolution for EM work and a solution space small 
enough to be searched efficiently by the methods de- 
scribed here. 

2. Methods 

2.1. Overview of the method 
This method for the phasing of low-resolution virus 

data is a four-step process. It consists of a coarse 
survey of the space of possible solutions using a genetic 
algorithm, a refinement which optimizes the statistically 
strongest answers from the survey, a selection procedure 
which identifies solutions containing no Babinet cross- 
over regions, and a final refinement which eliminates 
the coarseness of sampling imposed by the initial pa- 
rameterization. In the first and most expensive stage 
of the calculation, trial structures are generated and 
evaluated to determine the degree to which model-based 
structure factors agree with the observations. Because the 
efficiency of the first three steps is critically dependent 
on the way in which the model is described, special 
care was taken in selecting a parameterization for the 
problem. The resulting parameterization differs signifi- 
cantly from traditional Cartesian systems based on the 
crystallographic asymmetric unit, and offers significant 
advantages in both conceptualization and efficiency. In 
the following section, a description of this parameteriza- 
tion is followed by a step-by-step explanation of its use 
in phase assignment and refinement. Finally, the method 
is applied to a test system (perfect data from empty 
capsids of the Mahoney strain of type 1 poliovirus) and 
its performance is assessed. 

2.2. Physical model of the virus 
2.2.1. The usefulness of symmetry-consistent basis sets. 
In any optimization scheme, it is desirable to define 
the space of possible solutions in terms of the smallest 
possible number of independent parameters. EffÉciency 
also dictates that the constraints imposed by the math- 
ematical formulation of the model be as consistent as 
possible with the actual physical attributes of the system. 
The most effective parameterization examined involved 
modeling the virus crystal as a linear combination of a 
very small number of mutually orthogonal icosahedrally 

consistent basis functions. This formulation represents 
one of many ways for constructing eigendensities of the 
non-crystallographic symmetry-averaging operator. The 
particular basis set described here also has a physical 
interpretation: each basis function corresponds to the 
assignment of unit electron density to one lattice point in 
the icosahedrally unique volume (see Fig. 1). Construct- 
ing the basis set in this way has a desirable consequence: 
the assigning of ones and zeros to the lattice points yields 
a physically reasonable low-resolution portrayal of the 
contrast between protein and solvent. Additionally, the 
GA-based survey becomes more efficient when only one 
computer bit is needed for each variable. 
2.2.2. Description of the icosahedrally unique volume. 
The use of the term 'lattice' here is somewhat atypical, 
in that the pattern of regular spacing between grid 
points does not extend perfectly beyond the bounds 
of each unique volume. Instead, lattice points in non- 
crystallographic symmetry-related volumes are gener- 
ated by the application of non-crystallographic symmetry 
operators to the spatial coordinates of the unique grid 
points. 

The arrangement of lattice points within the icosa- 
hedrally unique volume was designed to optimize the 
uniformity of coverage within these volumes and be- 
tween their symmetry-related copies. A close-packed 
regular tetrahedral array of lattice points was deformed 
slightly to fit within the irregular tetrahedron defined by 
three adjacent icosahedral fivefold axes and the center 
of the virus particle (Fig. 2). The distance between 
adjacent lattice points was scaleable, permitting any 
degree of coarseness in the final sampling. Because this 
slightly irregular tetrahedron covers exactly three copies 
of the icosahedrally unique volume, two thirds of these 
points, which are redundant due to symmetry need to 
be removed. Those lattice points lying within or on 
the borders of the kite-shaped icosahedral asymmetric 

• 

n=1936 

Fig. 1. Diagram of the virus-modeling scheme. From left to right: 
each element of a real-valued (possibly Boolean-valued) vector of 
length m specifies the electron-density value at one of m tetrahedrally 
arranged volume elements which form the (wedge-shaped) icosahe- 
drally unique volume. By applying icosahedral and crystallographic 
symmetry operators, Nsym equivalent points are generated in the crys- 
tallographic asymmetric unit (denoted here by a rectangle). Finally, 
Fourier transformation (,F) gives rise to the corresponding complex- 
valued vector of the n unique structure factors, shown at the right. In 
this parameterization of the virus model, each possible vector of length 
m (on the left) specifies one possible symmetry-consistent model. The 
symbols m, n and Nsym are defined in the text. 
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volume delimited by one fivefold, one threefold, and 
two adjacent twofold axes of symmetry (corresponding 
to the irregular four-sided pyramid seen in Fig. 2) were 
retained. In addition, an outer spherical cutoff was im- 
posed which was generously greater than the estimated 
radial extent of the virus (available from experiment), 
but which required no other prior knowledge of its size 
and shape. 

Finally, all of the lattice points in the unique volume 
were shifted radially outward a short distance along a 
vector drawn from the center of the virus to the center 
of the four-sided base of the pyramid. This translation 
prevented any of the grid points from lying directly 
along any of the symmetry axes, and avoided the need 
to assign different multiplicities to points in differ- 
ent positions, which simplifies subsequent computations. 
(The extent of the shift, 2.2 grid units, allowed the 
separation between adjacent points in symmetry-related 
volumes to approximate the regular grid spacing.) This 
treatment ensures that the multiplicities of all lattice 
points are equal, and that each point is an equally 
weighted contributor to the refinement residual. There 
are unavoidable slight inequalities caused by the overlap 
of spheres near packing contacts between viruses, but 
it is believed that the effect of these small overlaps is 
minimal. 
2.2.3. Matrix-based Fourier transformation of the model. 
One advantage of this approach is that calculating the 
Fourier transform of the unit-cell contents is greatly sim- 
plified. Once preliminary calculations have been com- 
pleted, it becomes unnecessary to deal explicitly with 
the high degree of non-crystallographic symmetry. As 
shown in Fig. 1, each lattice point in the icosahe- 
drally unique volume is expanded by the application of 
symmetry operators to create the set of all its symmetry- 
related copies in the unit cell. (Here, in space group 
P21212, each point gave rise to 120 symmetry-equivalent 
copies.) This set was then Fourier transformed to yield a 
vector of the unique calculated structure factors, with 
the vector computed as in an atom-based structure- 
factor calculation. If the Fourier transform of the virus 
crystal includes exactly n unique reflections at the current 

5 
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Fig. 2. The slightly irregular tetrahedron formed by three adjacent 
icosahedral fivefold axes (labeled 5) and the virus particle center 
contains exactly three copies of the icosahedrally unique volume. One 
possible choice of unique volume is the four-sided pyramid enclosed 
by the planes connecting one fivefold axis, two twofolds (labeled 2) 
and one threefold (labeled 3). 

resolution limit, then the reciprocal-space representation 
of each of the lattice points is a complex-valued column 
vector of length n. Thus, the contribution of each lattice 
point to the set of unique J~calc is completely specified 
by multiplying its corresponding vector by the density 
value at that particular point. 

If m represents the number of lattice points in the 
icosahedrally unique volume, then in this parameteriza- 
tion of the virus crystal, every possible model of the 
electron density is constrained to be consistent with the 
symmetry of the virus, and can be specified completely 
by a real-valued (possibly Boolean-valued) vector of 
length m. This trial vector of model parameters will 
be called w. Once these m column vectors have been 
assembled into an m-by-n matrix (here designated A), 
calculation of the Fourier transform of each trial model 
(yielding the unique set of J~calc, {/~calc }) is accomplished 
by the computationally inexpensive matrix multiplica- 
tion, 

{/~'calc} -- mw. (1) 

This simplification will permit the evaluation of the 
trial model, namely a comparison of {IFcalcl } with 
{ IFobsdl}, at minimal cost. 

Once the space group and unit cell are known and the 
positions and orientations of the virus particles have been 
specified (conditions that are true at least in favorable 
cases), there exists a unique matrix, A, for any choice 
of n (where n is specified by the resolution limit) and 
arrangement of m lattice points in the asymmetric vol- 
ume. Possible arrangements include both the complete 
sampling of the spherically limited icosahedral unique 
volume described earlier and alternatives in which the 
same number of lattice points are distributed within 
some smaller envelope created from an EM image or 
by a previous calculation at lower resolution. The more 
restrictive arrangement has the benefit of increasing the 
density of sampling without increasing the number of 
variables at any given resolution. 

One practical implication of this design is that the 
cost of calculating the matrix A is borne only once, 
when the physical conditions of the experiment are first 
defined. The matrix A can then be reused repeatedly until 
the physical conditions of the experiment are changed, 
possibly reflecting an increase in resolution, a change 
in the envelope, or an improved estimate of the unit 
cell or position or orientation of the virus. (As currently 
implemented, the procedure runs on a multiprocessor 
SGI R4000 computer with shared physical memory, 
optionally allowing the matrix A to be shared among 
several coarsely parallelized processes.) 

2.2.4. Choosing the dimensions of A. The dimensions 
of A are determined by the conditions of the experiment. 
Once the size of n has been specified by the choice of 
resolution limit, the approximate size of m is constrained 
by the choice of n. At any given resolution limit, the 
number of crystallographically unique pieces of informa- 
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tion in the Fourier transform will be equal to the number 
of unique centric reflections added to twice the number 
of unique non-centric reflections (as the non-centrics 
have both real and imaginary components). Thus, if the 
crystal exhibits a degree of non-crystallographic sym- 
metry, designated N~ym (here 30-fold), and the modeling 
exercise assumes that an Nsym-fold expansion of m lattice 
points will completely account for the structure at the 
selected resolution limit, then an appropriate choice of 
m would be given by, 

m = (ncentri c "k- 2nnon.centric)/Nsy m. (2) 

Fortunately, the present scheme for modeling the virus 
is not critically dependent upon the optimal choice of m. 
Choosing too large a value simply reduces the efficiency 
of the selection process by forcing the search of a larger 
solution space than necessary, while choosing too small a 
value slightly reduces the range of resolution over which 
the calculation is valid. Any error of the latter sort is 
apparent in the resolution dependence of the agreement 
statistics, and is corrected for in subsequent stages of 
the calculation. 

2.2.5. The genetic algorithm. For macromolecules, the 
phase problem cannot be addressed easily with tra- 
ditional optimization algorithms because the space of 
possible structures has an unwieldy number of dimen- 
sions, and, for most plausible choices of refinement 
residual, it is pocked with local minima. Techniques such 
as simulated annealing (Kirkpatrick, Gelatt & Vecchi, 
1983) and Monte Carlo methods (Metropolis, Rosen- 
bluth, Rosenbluth, Teller & Teller, 1953) have been 
applied to some simple systems but may not represent 
the most efficient way to navigate such complex solution 
spaces. Genetic programming techniques offer an alter- 
native strategy for searching solution spaces that are not 
well behaved. 

Genetic programming methods are based on a rough 
analogy with Darwinian selection. In the same way 
that a population of natural life forms evolves, on 
average, toward a greater fitness for its environment, 
it is expected that a population of trial solutions to 
an optimization problem can be made to evolve into 
an improved set of solutions, assuming that both the 
appropriate selective pressures and a mechanism for 
change have been provided by the in silico environment. 
Often, the mechanism for applying a selective pressure 
is simply to bias the probability of reproduction in 
favor of those trials having greater fitness. This kind 
of machine learning procedure first was developed in 
the mid-1970's by Holland (Holland, 1975). Currently 
it is the topic of active research in computer science 
(see, for example, Forrest, 1993; Srinivas & Patnaik, 
1994) and has provided useful solutions for a variety 
of problems. Examples of the successful use of genetic 
programming can be found in Davis (1991) and Chang 
& Lewis (1994). 

Genetic algorithms constitute one subset of genetic 
programming techniques. In a genetic algorithm (GA), 
parameters expressing the set of possible solutions are 
encoded as bit strings (that is, strings of ones and zeros), 
where the fitness score of each bit string corresponds to 
some selected cost function (refinement residual) that 
results from an evaluation of the encoded parameter 
values. To create new trial solutions, the current large 
population of bit strings is regarded as a parental gener- 
ation. Then, using the metaphor of sexual reproduction, 
members of the parental generation are selected and 
paired randomly to produce offspring. A similar num- 
ber of progeny are created, each of whose bit strings 
represent some combination of its two parental strings. 
A selective pressure is applied to the process simply 
by giving the strings with better fitness scores a higher 
probability of reproducing. Over many generations, the 
population as a whole is expected to evolve towards a 
greater average fitness. This population shift increases 
the likelihood of discovering the correct solution to the 
optimization problem among the most fit members of 
the evolving population. This contrasts with an unbiased, 
random approach, such as Monte Carlo, which surveys 
the solution space in a more uniform way, and with 
simulated annealing which is an inherently more local 
approach. 

In common implementations of a GA, the single most 
important operation in the production of progeny strings 
is called crossing over (though as a secondary operation, 
random single-bit mutations also are introduced with 
low frequency to prevent premature convergence of the 
population and to make all regions of the solution space 
theoretically accessible). In crossing over, part of the 
progeny string is contributed by one of the two parents, 
and the remainder of the string is contributed by the other 
parent, with the locations of the cross-over points chosen 
at random. This tends to preserve successful bit patterns 
which are located close together in the linear sequence of 
the genome, which, by design in this approach to virus 
modeling, frequently corresponds to lattice points which 
are close together in space.* 

Genetic algorithms are believed to search the space 
of possible solutions more efficiently than purely ran- 
dom trials would, due to the phenomenon of implicit 
parallelization (Holland, 1975). In effect, GA's contain 
a built-in history mechanism wherein information about 
the fitness values of previously encountered bit strings 
is retained in the current population. This information 
is at least somewhat predictive of the fitness values 
of other strings not yet sampled which share some 
of the same bit patterns (though clearly, the accuracy 
of the predictions improves as the topography of the 
space being sampled becomes less complicated). For 

* Indexing the lattice points approximately in the order of increasing 
radius, as done here, may facilitate shell formation, though this surmise 
has not yet been tested. 
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that reason, GA's have been recommended as potentially 
useful optimization procedures to try when attempting 
to solve computational problems, such as ab initio virus 
modeling, which have no known efficient solutions. 

The specific implementation of the GA used in these 
experiments is the GAucsd program package (Schrau- 
dolph & Grefenstette, 1992). This well designed package 
requires the user to supply the subroutine to be used for 
evaluating the bit strings, but handles in a fairly transpar- 
ent fashion the generation, maintenance and reproduction 
of populations of bit strings, in accordance with a set 
of user-selected attributes. A so-called 'roulette wheel' 
is employed by GAucsd to make the probability of 
reproduction of a bit string proportionate to its fitness. 
Here, each individual is assigned a segment of the wheel 
proportional in size to its user-defined fitness, and an 
individual is selected for reproduction when a 'spin 
of the wheel' lands within its angular range. In the 
case of virus modeling, whenever the fitness-evaluating 
subroutine receives a bit string from the main program 
(here interpreted as a Boolean vector of length m), the 
vector is multiplied by the matrix A, yielding the n 
unique Fourier coefficients corresponding to the model 
implicitly specified by the bit string. The fitness score 
then reported back to the main program could be any one 
of several plausible choices. To date, the two quadratic 
residuals used most often have compared the model 
based transform with the set of unique observations, 
expressed either as reflection intensities (L, bs• and Icalc) 
or as structure-factor magnitudes (IF,,b~j[ and IFc~l~ I). 

Q21 1 (lobsdlcalc) 2 / 2 2 = - -  ( l o b ~ )  (Icalc)" ( 3 )  

Q2F = 1 -- (IFobsdllFcalcl)2/(lFob~dl2)(lFcalcl2). (4) 

In addition, the residuals Q1/and QIF have been defined 
as the square roots of Q2/and Q2F, respectively. Each 
of these expressions can be recognized as a simple alge- 
braic rearrangement of the unweighted normalized mean- 
square discrepancy, assuming that the least-squares value 
of the linear scale factor between Icatc and lob.~,~ or 
IF.,cl and [Fob.~dl already has been incorporated into 
the expression. The fraction contained in each of these 
expressions resembles the square of the linear correlation 
coefficient, except that the best fitting line which is 
implicit in a correlation coefficient is constrained in this 
case to pass through the origin. 

2.3. First refinement step 
Once several runs of the GA (involving perhaps tens 

or hundreds of millions of trials) have identified a few 
promising regions of the parameter space, the next step 
of the procedure involves refining each of the candidate 
solutions. The purpose of this refinement is to relax the 
artificial constraint which limits each lattice point to only 
one of two possible values. This relaxation allows a more 
accurate modeling of the virus. 

The refinement is a steepest descent minimization of 
Q2F with respect to the electron densities at the m unique 
lattice points, here defined as w(1) . . .  w(m). In each 
iteration of the refinement, a search direction for line- 
search minimization, here denoted Aw(1) . . .  Aw(m), 
is obtained from the multiplication, 

A W  = BZ~Fer ro  r . ( 5 )  

Here, --3. Ferr,,r represents the vector of n unique difference 

coefficients, 

AFerror(h ) = [IFobsd(h)l- [Fcalc(h)l]exp[iqgcalc(h) ] (6) 

(for h =1 . . . . .  n) with the set of Fc~lc appropriately 
scaled. The matrix B is defined as, 

B = [Re(A "r A)-1]A "r. (7) 

The vector of density shifts thus obtained, J w ,  can be 
recognized as a slope-over-curvature expression for the 
least-squares minimization of Q2F. As with the use of 
the matrix A described above, the matrix B needs to be 
calculated only once. 

2.4. Selection 
In the results which follow, the overall agreement 

statistics which consider all of the reflections at once 
are shown to have only a limited value in predicting 
the quality of the associated phase sets. In particular, 
high values of the residuals are diagnostic of poorly 
phased solutions, but low values of the residuals do not 
distinguish between good and bad answers. As will be 
shown below, these limitations of the residual were over- 
come by considering small resolution ranges individually 
rather than collectively. The selection procedure acts to 
bin the data into some small number of resolution ranges 
(which may overlap) and to evaluate the residual [(3) or 
(4)] in each resolution bin for each of the refined trial 
structures. Then, rather than accepting a trial solution 
because its bin-specific statistics are good relative to the 
remainder of the population ('survival of the fittest'), the 
selection process instead rejects those solutions which 
have the poorest bin-specific statistics in any of the bins 
(effectively 'elimination of the least fit'). 

Two methods for selection have been investigated 
which follow this paradigm. The results presented in this 
manuscript are based on the simpler of the two, which is 
easier to implement as it merely involves choosing the 
single best trial produced by each of the 200 GA runs, 
evaluated after they have been refined. Eliminating all 
but one of these 200 candidates was accomplished by 
visiting each of eight non-overlapping resolution bins 
in succession, and discarding some fixed percentage of 
the worst scoring trials in that bin, repeating the series 
of bins if needed, until only one (or a few) candidate 
solutions was left. Using this approach, the selection 
procedure would accept trial models which gave only 
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moderately good statistics in any or all resolution ranges, 
so long as unusually bad statistics occurred in none of 
the resolution ranges. The second method, developed 
subsequently, involves a modification of the GA, and 
is discussed below. 

2.5. Final refinement step: increasing the fineness of 
sampling 

At the end of the procedure, a final refinement step 
was carried out to eliminate the coarseness of sampling 
imposed by the coarse-grained icosahedral lattice, but 
without changing the resolution limit used in the pre- 
ceding steps. Thus, after a small number of promising 
candidates from the GA had been refined to remove the 
two valued density constraint, a still smaller number of 
the remaining candidates which survived the selection 
procedure were subjected to this final refinement. Using 
a locally developed memory-resident implementation of 
the method of Bricogne (1976) and a conventional d/8 
grid, 20 cycles of iterated direct-space averaging were 
applied to initial phase sets specified by the trial models. 
This refinement, carried out at the same resolution limit 
as the previous steps, acted to eliminate the coarseness 
of sampling imposed by the coarse-grained icosahedral 
lattice. 

2.6. The need for improvements of the averaging 
calculation 

In the course of developing the memory-resident 
scripted map averaging procedure for use at extremely 
low resolution, an interesting phenomenon came to light. 
First, it was noted that even when a perfect set of 
low-resolution phases and amplitudes was used as a 
synthetic standard, one or more cycles of averaging 
at 24 A resolution yielded calculated structure factors 
which differed from the input reference standard by a 
surprisingly large 18% in R~ ryst*. That calculation had 
used a 170 A radius envelope which was spherical except 
in the region where spheres would overlap. When vector 
difference maps of the asymmetric unit (not shown) 
were calculated by Fourier inversion of the appropriately 
scaled vector difference coefficients, 

A/~(h)vec =/~obsd(h) --/~'calc(h), (8) 

the source of this large discrepancy in QF became 
evident. A large negative difference density feature was 
seen at about 150A radius, just below the point on 
the spherical surface which contacts the neighboring 
virus particle. This feature nearly disappeared when the 
calculation was repeated with identical envelopes at a 
higher resolution limit. 

In effect, the unaveraged map contains an unavoidable 
series termination ripple from the neighboring particle 
and from the solvent mask, which affects the icosahedral 

*e~ ~yst= (llFob~l- IFcatcll)h/(IFob~dl)h. 

subunits adjacent to it much more than the distant ones. 
Because the electron density in affected subunits is no 
longer identical to the other symmetry-related subunits, 
any direct-space averaging operation which includes 
these affected grid points must yield a corrupted estimate 
of the averaged density. This makes it impossible to 
simultaneously satisfy both the constraints imposed by 
symmetry and the constraints of consistency with the 
low-resolution data until after the resolution of the 
calculation has been extended. Statistically, however, 
most of the effect appears to have been due to solvent- 
flattening alone, as observed previously in polyoma 
(Rayment, 1983), as R~ ryst was reduced only to 16% 
when 30-fold averaging was omitted. 

2.7. Modifications to averaging and phase extension 
Although well known series termination effects in 

the application of non-crystallographic symmetry pre- 
viously have been described (e.g. Rayment, 1983), they 
are pointed out here for three reasons: (1) because an 
appreciation of their severity is required to account for 
the high values of the refinement statistics; (2) because 
eventually they bear directly upon the goal of extending 
phases from low resolution to higher resolution; and 
(3) because they suggest an unconventional strategy 
for direct-space averaging at extremely low resolutions, 
which has, in fact, been utilized here. 

Noting that the most severe of the series-termination 
effects with perfect data were localized to specific spots 
on the outermost portion of the spherical envelope, 
simple variants of the averaging process were devised 
to prevent the most severely affected points from under- 
going density modification. Here, rather than applying 
'solvent flattening' to the points in the input map which 
lie outside of the envelope, this routine simply leaves 
them alone, retaining their original values. Points within 
the envelope continue to be averaged with values inter- 
polated at their symmetry-equivalent positions, as usual. 
With this procedural variant in place, the 170 A radius 
envelope yielded an R~ ryst of 10% in the test with perfect 
low-resolution phases. Limiting the radius to 155 A had 
the effect of reducing the statistical discrepancy to 6%, 
and further shrinking the envelope to 140 A lowered the 
discrepancy to only 2%. 

Obviously, using this approach involves a deliber- 
ate decision to sacrifice some of the power of the 
non-crystallographic symmetry-constraint procedure by 
discarding many of the constraint relationships the- 
oretically available, and its use probably should be 
discontinued once data of sufficiently high resolution 
are included. The benefit, however, is that the averaging 
system behaves more nearly as it should, preserving 
an input set of perfect phases and amplitudes nearly 
intact. With adequate data, the large set of constraint 
relationships which remain should be sufficient to refine 
the input phases towards symmetry-consistent values. 
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A better compromise, to be investigated in the future, 
might involve creating a more sophisticated envelope 
having a larger radius and 'cut outs' near the par- 
ticle contact points. Unlike the traditional averaging 
approaches which include solvent flattening, this uncon- 
ventional averaging approach should be fairly tolerant 
of errors in the shape of the envelope. Using the en- 
velope solely to distinguish points which are averaged 
from points which are not, automatically eliminates the 
potential danger of 'chopping off' and flattening portions 
of a macromolecule lying outside of an accidentally 
misconfigured envelope in the early stages of a structure 
determination. 

2.8. Improvements in the GA 

Given the success of the rather simple selection pro- 
cedure outlined above, an additional effort was made 
to incorporate the resolution-dependent 'elimination of 
the least fit' principle directly into the GA. This was 
expected to be a much more efficient process than 
refining against one criterion and then selecting against 
a different one. With experimentation, it was discovered 
that a refinement residual could be designed which had 
the desired characteristic that trial solutions which were 
particularly poor in any resolution range (relative to the 
other contemporaneous trials) were penalized severely, 
but that trial solutions which were particularly good 
were given only a slight advantage. One such residual, 
normalized for the number of bins (N), took the form, 

Qexp --  ( 1 / N )  ~ exp[k(Qbi  n --/Zbin)/O'bin] (9) 
N 

where Qbin is the Qlt or QIF residual of a particular bit- 
string trial in a specific resolution range (overlapping 
or non-overlapping), and k is an empirically determined 
constant. #bin and O'bi n are recently updated estimates 
of the mean and standard deviations of all previously 
encountered values of Qbin, weighted in a way that pro- 
gressively decreases the influence of older individuals. 
Computationally, it is convenient to calculate # and cr 
by updating the bin-specific running sums So, St, and $2, 
every time a new bit string (or generation of bit strings) 
is evaluated. Thus, for j = 0, 1 and 2, the current value 
of Sj is, 

Sj ,-- tSj +Q~in, (10) 

where t is a multiplier slightly less than one. The mean 
and standard deviation for each bin are then given by, 

1.£ "-- S 1 / S o ,  (1 la) 

O" = [ ( S 2 / S o )  - -  #2]1/2. (1 l b )  

It must be noted, however, that this approach deviates 
significantly from the simple paradigm for the GA 
wherein any given bit string always is characterized by 
the same fitness value, regardless of when it is evaluated. 

Instead, the Qexp score  of any particular string becomes 
worse as the overall fitness of the population improves 
with time. One way to avoid mistakenly choosing a poor 
string which happens to score relatively well early in the 
GA simply requires that a few of the best individuals in 
each generation be retained into the following gener- 
ation (a strategy sometimes referred to as 'incomplete 
replacement', or 'elitist survival', which is a standard 
option of the GAucsd package). With this approach, 
the best bit string generated by this procedure is then 
easy to identify as the best surviving individual in the 
final generation. Thus far, preliminary tests with this 
latter method have yielded answers comparable with the 
simpler selection method, though in considerably less 
time (data not shown). 

3. Results 

3.1. Test structure for the calculations 

The experiments reported here are idealized attempts 
to generate phases for poliovirus at 24A resolution. 
These experiments begin with error-free data calculated 
from an atomic model, a generous overestimate of the 
radius of the virus (which could easily have been ob- 
tained from the dimensions of the unit cell and packing 
considerations, or from electron micrographs of frozen 
hydrated samples), and knowledge of the position and 
orientation of the virus in the crystal. In many instances, 
the orientation of the particle can be determined experi- 
mentally (very accurately at low resolution) by the use of 
icosahedrally locked rotation searches versus the higher 
resolution data (Tong & Rossmann, 1990). Meanwhile, 
the position may be known from the space group and 
packing considerations.* These 24 A experiments are a 
necessary precursor to experiments at higher resolution, 
which will be forthcoming. 

These test calculations are based on an actual crystal 
structure. The high-resolution structure of native anti- 
genic empty capsids of the Mahoney strain of type 1 
poliovirus has been reported by Basavappa et al. (1994) 
These virus assembly intermediates crystallize in space 
groupP2t2t2 witha -- 322.9, b = 358.0andc -- 380.1 A 
with one half virus particle per asymmetric unit. The 
virus particle center is located on the crystallographic 
twofold axis (c), almost exactly at z -- 1/4, with one of the 
icosahedral twofolds coincident with the crystallographic 
twofold. The orientation of the virus particle in the 
P2~2~2 cell can be described by noting that two of the 
other icosahedral twofold axes which are perpendicular 
to the c axis are rotated 2.3 ° away from the directions 
of the crystallographic principals a and b. Crystals 
of the native empty capsids are nearly isomorphous 
with crystals of mature poliovirions, and the orientation 

* Though an insufficiently accurate particle position is sometimes fatal, 
the phase-determination procedure suggested here would increase the 
resolution limit of the calculation very slowly, permitting the particle 
position to be refined as the phase determination progressed. 
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parameters of the mature virus (Hogle et al., 1985) were 
determined originally from the observed data using an 
icosahedrally locked rotation function at high resolution. 

The values for m and n follow directly from the 
resolution of the experiment. At 24A there are 1936 
unique reflections, and this specifies the value for n. m 
was chosen to be 99, based on (2), given that Nsym is 
30 and that approximately half of the unique reflections 
are centric. Hence, in these experiments, A is a 99- 
by-1936 matrix with complex-valued entries, and B is 
1936-by-99. 

3.2. The treatment of bulk solvent 
Several different GA based searches were conducted, 

of which only the two most promising are described here. 
These searches differed only in their description of the 
density level of the bulk solvent relative to that of the 
protein. Because the volume of the unit cell outside of 
the spherical envelope is not populated by any of the m 
unique lattice points or their symmetry-related copies, 
this entire volume implicitly has a density of zero. 
However, this model is not entirely realistic, as the actual 
bulk-solvent region has a non-zero average density. In 
the highly simplified virus model utilized here, there are 
several plausible ways to account for the influence of the 
bulk solvent. In the most straightforward, the bit-string 
values of 1 and 0 can be mapped to any two specified 
electron-density levels which, in the absence of a known 
F000 term, represent offsets from the bulk solvent level, 
which is then mapped to zero. 

In the first of the GA experiments, the bit values 1 
and 0 were mapped to 1.0 and 0.0, respectively, so that 
the bulk solvent was equivalent to the background level 
in the interior of the virus particle. In the second set 
of experiments, the two bit-values were mapped to 1.0 
and -1.0, causing the bulk-solvent level to be exactly 
half of the highest protein density. This latter mapping 
should result in the creation of positive and negative 
images of the virus equally often, and either answer is 
acceptable. Efforts to optimize the relative bulk-solvent 
level might be productive in attempts to solve a real 
crystal structure; however, the current use of ideal data 
calculated from an atomic model makes that line of 
investigation irrelevant.* 

* The assignment of 0.5 to the bulk solvent causes a physically unrealistic 
situation in which some regions of" the virus are assigned densities below 
the bulk-solvent level. In practice, however (see Table I, below), these 
solvent models yield correct phases more often than those where the 
bulk-solvent level is 0.0. A likely explanation is that at the outset of the 
GA, a random arrangement of "black' and "white" points creates a 'gray" 
sphere which contrasts strongly with a white background (0.0), but not 
with a gray one (0.5). This artifact makes the starting low-resolution 
phases much better than random, though they fail to improve as much 
over the course of the GA experiment (data not shown), presumably 
because of a built-in bias toward an incorrect structure. In contrast, the 
population which is entirely unbiased at first refines to a better set of 
solutions, cvcn though the models are forced to remain non-committal 
about the contents of the solvent region until the rcfincment stage. 

3.3. GA test calculations 
Two separate genetic algorithm experiments were 

undertaken using the GAucsd package, differing only in 
their description of the bulk-solvent background. In each 
case, on the order of 200 trials were run in each of which 
a random starting population of 500 bit strings of length 
99 was subjected to evolutionary pressure until either 
42 000 individuals had been evaluated or the population 
had reached convergence (which occurred in about 15 % 
of the trials). The entire population was replaced in 
each generation and cross-over and mutation rates were 
1.4 and 0.000170, respectively, which correspond to the 
default values suggested by GAucsd. Each experiment 
consumed 6 d of computation time on a Silicon Graphics 
R4000 processor and represents the evaluation of more 
than seven million test models. For each of the roughly 
200 trials in each experiment, the single Boolean vector 
with the best fitness score was recorded for future use. 
Thus, the seven million evaluations yielded about 200 
candidate solutions in each experiment. 

3.4. Behavior of thefitnessfunction during the procedure 
In the earliest generation of the GA, with coarse 

sampling and binary-valued parameters, the average Q~/ 
score tended to average 0.58 or 0.96, depending on 
whether a zero or a non-zero bulk-solvent model had 
been included. These values were consistently better 
than 1.0, which is the theoretical value for an entirely 
random structure, presumably because the appropriate 
icosahedral symmetry has automatically been imposed. 
By the final generations of the GA, Q~t scores around 
0.21 and 0.18 were typical (and on average, the best 
scores in each experiment were only 0.01-0.02 better). 
Given that the GA is explicitly a minimizer of QII, these 
relatively high values suggest that the coarseness of the 
model has limited the extent to which the observed and 
calculated transforms can possibly agree. 

After the GA, the lowest scoring trial from each ran- 
dom starting population was refined to relax the binary 
valuation constraint, assuming each of three possible 
solvent models during the least-squares minimization of 
Q2F. Over the course of the refinement, the QIF values 
which were monitored dropped significantly. Thus, when 
the bulk-solvent level was matched to the background 
density in the interior of the protein, the average overall 
QIF s c o r e  for the best solution in each of the 203 
trials dropped from 0.61 to 0.31 over the course of the 
refinement. In the other reported search, the bulk-solvent 
level was equivalent to one half of the protein density, 
and the average QIF residual among 178 candidate 
solutions dropped from 0.52 to 0.24 as the refinement 
progressed. 

Finally, in the last refinement stage, the lattice coarse- 
ness constraint was relaxed using conventional iterated 
map averaging (Bricogne, 1976). Here the number of 
w(x) variables used to describe the solution had increased 
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dramatically, while the information content of the low 
resolution Fourier transform remained the same as be- 
fore. Not unexpectedly, dramatic improvements often 
were seen in QIF, which was reduced to the 0.06 to 
0.11 range.* 

3.5. Phasing results of the GA 
In order to track the performance of the algorithms 

under development it was necessary to calculate com- 
parisons with correct phases, even though the algorithms 
themselves are based on amplitude information alone. In 
view of the reasonably good correlation between the cen- 
tric and non-centric statistics (see Fig. 3a, for example), 
it is sufficient to focus only upon the centric statistics. 
The panels in Fig. 3 are scatter plots, with each point 
representing one of the 200 candidate solutions from a 
single GA experiment. Here, the percentage of correct 
centric phases is plotted versus the Q~F residual, either 
with all of the unique reflections included (Fig. 3b), 
or with different resolution ranges considered separately 
(Figs. 3c-3h). It is clear that the overall residual score 
is positively correlated with the internal self-consistency 
of the phase set, though the degree of correlation varies 
among resolution ranges. Significantly, this correlation is 
due primarily to the fact that test solutions with largely 
incorrect phases yield high residuals, while lower values 
of the residual are not particularly reliable indicators of 
phase consistency. 

3.6. Phasing results of refinement 
The behavior of the centric phases over the course of 

the procedure is illustrated in Figs. 4 and 5. As examples, 
two of the final models identified by the selection 
procedure are included, one typical of an acceptable 
solution (Fig. 4), and one typical of an inconsistently 
phased solution (Fig. 5). Although the solution plotted 
in Fig. 5 was obtained from the void bulk-solvent 
experiment and the solution in Fig. 4 was from the 
0.5 solvent level search, these solutions were selected 
as illustrative and typical of the results obtained from 
either of the searches. 

3.7. The good solution 
In the acceptable solution, the bit-string trial identified 

by the GA (Fig. 4a) yielded an overall Qli residual 
slightly better than average (0.1564), and the centric 
phases initially were self-consistent to 50/k. Relaxation 
of the two-valued constraint on the density in the first 

* The QiF and Qit residuals share a common minimum, though QIt is 
more strongly influenced by the largest reflections, including several in 
the lowest resolution ranges. The QIt was used in the GA, and reported 
here, because acceptable answers were produced more often than when 
QiF was used (perhaps because the coarse model is much less accurate 
at higher resolution). It is expected that the method is not critically 
sensitive to the choice of residual, and no systematic effort has yet been 
undertaken to optimize it. 

refinement step acted to improve the phase set so that 
no extensive cross-over regions remained, though ran- 
domization of the phase set was seen at several points 
in the higher resolution end of the transform (Fig. 4b). 
The corresponding map (Fig. 4e) showed substantial 
improvement. The averaging step (Fig. 4c) improved the 
phase consistency to the point that 75% of the centric 
phases were correct and the corresponding map (Fig. 43') 
was qualitatively similar to a map phased perfectly at 
24/k (Fig. 4g). Although the phases beyond 30/k still 
need improvement, this map would be sufficiently accu- 
rate to be the basis for tighter non-geometric envelopes 
in subsequent stages of the structure determination (see 
below). Though the phases from the model in Fig. 4 
happen to be generally in agreement with the reference 
phases, a set with the opposite phases would have been 
equally acceptable. 

3.8. The poor solution 
In contrast, the phase plots for the poorly phased 

solution contain several oscillations (Fig. 5a-5c), and 
the corresponding maps (Figs. 5d-53') look very little 
like the reference structure. Each peak and trough in 
the plots represents a local group of reflections whose 
phases are consistent with respect to sign and hand, 
but phases in the peak and trough regions are not 
consistent with one another. Most often, the incorrectly 
phased data represent the negative (or Babinet opposite) 
of the structure, though the hand of the corresponding 
structure may vary in certain space groups, and the 
conditions of the experiment enforce a consistent choice 
of origin. Similar patterns commonly have been observed 
previously in NCS refinement starting with random or 
inconsistent phases (see above). These phase cross-overs, 
present in the vast majority of the millions of random 
trials, are precisely what the binned selection procedure 
seeks to identify and eliminate. The task of determining 
a self-consistent starting point for phase extension thus 
can be reduced to finding a transform with no cross- 
over points or, alternatively, to finding one which is 
self-consistent out to as high a resolution as possible. 
Observe in Figs. 5(b) and 5(c) that despite continued 
refinement, most of the phase cross-overs have persisted. 
This suggests that selection from a large population, 
rather than minimization, is likely to be the most fruitful 
approach. 

The significant phase changes caused by refinement 
can be seen in Figs. 4 and 5 by comparing parts (a) 
and (b). Changes seen in Fig. 5, which are less dramatic 
than in Fig. 4, are fairly typical of the large majority 
of the trials. In the experiments described in Table 1, 
refinement caused 27-48 % of the centric reflections to 
change. Subsequent relaxation of the lattice coarseness 
constraint clearly affects the phases to a lesser extent, 
as seen by comparing parts (b) and (c). In both Figs. 
4 and 5, small improvements at higher resolution are 
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achieved at the expense of worsening agreement in the 
lowest resolution portion of the transform. 

3.9. Phasing results of selection 

After the initial refinement step, the simpler selection 
procedure was run in two slightly different ways, to 
select a single best answer from each of the six reported 
experiments. Details of the experiments are given in the 

legend of Table 1. The Q]F residual and the fraction 
of correct centric phases (denoted Fract) are listed in- 
dividually for each resolution bin and collectively for 
the 24 A. data. Both high and low percentages of correct 
centric phases are indicative of  acceptable solutions, as 
they both represent self-consistent solutions. It is clear 
from this table that the overall residual is not sufficient 
to discriminate between acceptable and poor solutions, 
as the solution with the best overall residual (0.1431) 
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Fig. 3. Scatter plots indicating the 
extent to which the amplitude- 
based statistic, QIF, serves as a 
predictor of phase consistency. 
Each of the ,--,200 points in 
each panel represents the best- 
scoring outcome of a single GA 
experiment. (a) The correlation 
between centric and non-centric 
statistics. (b-h) The correlation 
between centric statistics and 
phase consistency. Panel (b) 
includes all centric reflections 
to 2 4 A ,  while each of the 
panels (c-h) was calculated 
using reflections exclusively 
from one of the resolution bins 
(I-6)  specilied in Table 1. Here, 
the abscissa represents a measure 
of internal self-consistency: the 
fraction of the centric phases 
which agree or disagree with the 
reference standard, whichever 
is the lesser. Thus, zero would 
be perfectly consistent, and 0.5 
represents a random outcome. 
The crossed lines in panel (h) 
are drawn to emphasize the 
salient point: that values of the 
residual which are high relative 
to the other scores in the same 
bin (i.e.. points lying above the 
horizontal line) often identify 
reflection sets which are among 
the most inconsistently phased 
(points lying to the right of the 
vertical line). 



246  G E N E T I C  A L G O R I T H M  FOR P H A S I N G  OF I C O S A H E D R A L  V I R U S E S  

. . . . . .  

o . 5  . . . .  
~, i - 

~ 0 ~ -  -- 

~ - 0 . 5  -- 

-1 

0.01 O.02d. (A,)O.03 O. . 5 

(a) 

1 
~ ' ~, (e) 

~ L ~  t 4 ~ l  .=2_ ...... 

0 . 
u 

i 
u 

"~ - o . s  . ......... ; , 
u 

' i 

o o .o ,  o .o~ o .o~  o .04  o .o~ 

d* (A")  

(b) 

1 

, . . . '  
. . . . .  . . . . . . .  

u .z- 
.l-, 

~, -0.s 
u 

I 
. . . . . .  i 

0 0.01 0.02 0.03 0.04 

d* (A ~ ) 

(c)  

(d) 

(g) 

Fig. 4. The quality of the map and phases at successive steps of the 
procedure. One of the final models identified by the selection proce- 
dure, typical of an acceptable solution, is shown before refinement (a 
and d), after refinement (b and e), and after averaging (c and j0. The 
first three parts (a-c) plot the mean cosine of the centric phase error, 
averaged over a sliding window ten reflections wide, as a function of 
resolution, while the next three parts (d-f) show the z = 0 section orthe 
corresponding map, contoured arbitrarily. For comparison, panel (g) 
shows the perfectly phased reference structure, with the data truncated 
to 24/~, resolution. 
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i n c l u d e s  at  leas t  o n e  s e v e r e  c r o s s - o v e r  b e t w e e n  b ins  4 

a n d  5, a n d  the  o v e r a l l  f r a c t i o n  o f  s e l f - c o n s i s t e n t  c e n t r i c  

p h a s e s  ( 4 6 % )  is c l o se  to a r a n d o m  o u t c o m e .  

E v e n  t h o u g h  s o m e  o f  the  c h o s e n  p h a s e  sets  a r e  

i n c o r r e c t ,  r e su l t s  o f  the  sor t  p r e s e n t e d  in Tab le  1 w o u l d  

be  a s a t i s f a c t o r y  o u t c o m e  in the  so lu t ion  o f  an  ac tua l  
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Fig. 5. The effect of successive steps of the procedure on an inconsistently phased trial. One of the final moOeis identified by the selection procedure, 

typical of an unacceptable solution, is shown before refinement (a and d), after refinement (b and e), and after averaging (c and 3'). The plots 
(a-c) and the maps (d-J) are explained in Fig. 4. When first selected by the GA, this solution had an overall Qlt residual slightly better than 
average (0.1791). In this poorly phased solution, all of the refinement steps have tended to create a commonly seen pattern in the transform 
in which resolution shells of correctly phased data alternate with shells of data whose phases are consistent with the non-crystallographic 
symmetry, but inconsistent with the phases in other resolution ranges. 
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Table 1. Resolution-dependence of the phasing statistics for 12 automatically selected models 

The unique centric reflections, listed in increasing resolution order, have been grouped into eight equal non-overlapping bins. For each resolution 
bin, and for the centric data as a whole, the fraction of correct centric phases ('Fract.') and the value of the amplitude-based selection criterion (QIF) 
have been listed. The models presented here were chosen as follows: First, the GA experiments labeled I18h and I28h were run repeatedly, using 
Q~t as a selection criterion, and assuming solvent levels of zero and 0.5, respectively. Then, the single best trial from each experiment was further 
refined versus Q2r, to eliminate the binary-valuation constraint. These refinements, labeled F0h, F 1 h and F2h, represent mapping of the bulk solvent 
levels to 0, 1, and 0,5, respectively. Finally, a single 'best' answer was selected automatically from among the 200 refined possibilities in each of the 
six experiments by considering the resolution bins in succession, and discarding one or more of the worst scoring trials in that bin. If necessary, this 
process was repeated until only a single representative of each experiment was left. As it turned out, the particular set of six solutions that was 
chosen changed when the bins were considered in a different order, though the quality of the results were similar in both of the sets of six, shown 
above. 

Bin 1 Bin 2 Bin 3 Bin 4 
Resolution ( , ~ )  ~-67.85 67.85-47.98 47.98-39.17 39.17-33.62 
Experiment Q~F Fract. Q1F Fract. Q~r Fract. Q IF Fract. 

ll8h.O1.F0h 0.0390 0.0312 0.2457 0.1129 0.3914 0.2836 0.4583 0.4219 
llSh.O1.Flh 0.1575 0.2031 0.3381 0.3871 0.3418 0.3881 0.3743 0.4375 
ll8h.01.F2h 0.0517 0.0938 0.2919 0.2903 0.2895 0.3731 0.3770 0.4219 
128h.01.F0h 0.0567 0.0312 0.4335 0.2742 0.3922 0.2687 0.4015 0.2344 
I28h.01 .FI h 0.0579 0.0312 0.4313 0.2581 0.3564 0.2388 0.3722 0.2656 
I28h.01 .F2h 0.0620 0.8906 0.4300 0.7097 0.3665 0.7463 0.4519 0.7969 
I18h.01.FOh 0.0523 0.0312 0.4434 0.2903 0.3107 0.3881 0.4019 0.5312 
ll8h.OI.Flh 0.1171 0.2188 0.4968 0.5645 0.2851 0.3881 0.4071 0.3906 
ll8h.01.F2h 0.1259 0.2188 0.3805 0.4032 0.3622 0.4179 0.3996 0.3594 
I28h.OI.F0h 0.0567 0.0312 0.4335 0.2742 0.3922 0.2687 0.4015 0.2344 
I28h.01 .F l h 0.0579 0.0312 0.4313 0.2581 0.3564 0.2388 0.3722 0.2656 
128h.01.F2h 0.0615 0.0312 0.4325 0.2742 0.3658 0.2687 0.4619 0.2344 

Bin 5 Bin 6 Bin 7 Bin 8 Overall 
Resolution ( ~ , )  33.62-30.34 30.34-27.70 27.70-25.64 25.64-24.00 oo--24.00 
Experiment Q~F Fract. Ql~ Fract. Q lr Fract. Q lr Fract. Qle Fract. 

I18h.01.F0h 0.3586 0.4127 0.5095 0.2295 0.5722 0.2769 0.6618 0.3500 0.1472 0.2648 
I18h.01.Flh 0.4025 0.6349 0.5525 0.6066 0.6722 0.5538 0.6579 0.4667 0.2121 0.4585 
I 18h.01 .F2h 0.2781 0.6508 0.4898 0.6721 0.5300 0.5385 0.7386 0.5500 0.1431 0.4466 
I28h.01.F0h 0.2729 0.4127 0.3467 0.4426 0.5577 0.3538 0.5842 0.3333 0.1735 0.2925 
128h.01.Flh 0.2642 0.4286 0.3955 0.3934 0.5863 0.3231 0.5976 0.2333 0.1718 0.2708 
I28h.01.F2h 0.2728 0.7937 0.3933 0.5410 0.5166 0.6000 0.5878 0.6833 0.1735 0.7213 
I18h.01.F0h 0.2547 0.5873 0.4217 0.5902 0.6369 0.5231 0.6729 0.4667 0.1708 0.4249 
ll8h.01.Flh 0.3115 0.5714 0.3936 0.6230 0.6075 0.4769 0.5891 0.4833 0.2038 0.4625 
ll8h.01.F2h 0.3478 0.4444 0.4216 0.5574 0.6162 0.4154 0.6236 0.4167 0.1946 0.4032 
128h.OI.F0h 0.2729 0.4127 0.3467 0.4426 0.5577 0.3538 0.5842 0.3333 0.1735 0.2925 
I28h.OI.Flh 0.2642 0.4286 0.3955 0.3934 0.5863 0.3231 0.5976 0.2333 0.1718 0.2708 
I28h.01.F2h 0.2567 0.3333 0.3781 0.3934 0.5413 0.3077 0.5823 0.2333 0.1746 0.2589 

crystal structure because a sufficiently large proportion 
of the chosen solutions (here, about half) are acceptably 
self-consistent. Direct phase extension to high resolution 
could affordably be applied to several of the candi- 
date solutions. Eventually, the agreement of any of the 
high-resolution images with amino-acid sequence and 
stereochemical information would provide the definitive 
objective test of the accuracy of the image. 

4. Discussion 

4.1. Inadequacies of an overall residual 
The  results above demonstrate that the simple 

resolution-independent overall residuals tested here were 
not sufficient either to evolve or to select acceptably 
self-consistent solutions to the virus phasing problem. 
However, alternative formulations of the residual or 
of the selection criterion which grouped the reflections 

according to resolution have given acceptable results 
with ideal test data, and have suggested promising 
avenues for future investigation. 

It should be emphasized that the inability of the 
unmodified QF and Qt residuals alone to provide a 
sufficiently powerful filter could not have been predicted 
in advance, partly because they represent an entirely con- 
ventional approach to the application of NCS constraints. 
If the reflections are not weighted, the simple Q2F 
refinement residual is the very same residual implicitly 
minimized by successive projection in the methods of 
Crowther (1969) and Bricogne (1974); and similarly, 
Jacobson, Elkin, Hogle & Filman (manuscript in prepa- 
ration) have successfully applied NCS constraints to a 
high-resolution virus structure by the minimization of Qt. 
It was conceivable that the ability of the GA to escape 
from local minima would prove sufficient, providing 
that the residuals themselves were serving as sufficiently 
accurate indicators of global phase consistency. 
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Neither is the incorporation of a resolution-dependent 
binning scheme into NCS refinement a particularly rad- 
ical idea. Beginning with the structure of P1/Mahoney 
in 1985 (Hogle et al., 1985), all of the high-resolution 
icosahedral virus structures solved in this laboratory 
have utilized this common technique. An important 
benefit of binning the reflections according to resolution 
is that binning provides a reliable way to avoid potential 
mis-scaling of the transform of the model as a function 
of resolution. Such mis-scaling may have contributed to 
the inadequacy of the overall statistic. 

Two principal reasons can be offered to explain why 
the simple overall residuals tested here were not suffi- 
cient. 
4.1.1. Low values do not guarantee good solutions. 
Ideally, if the residual utilized as a fitness function were 
applying the proper evolutionary pressure, there would 
be a strong positive correlation between the statistical 
fitness of the trial structures and the extent to which 
their model-based centric phases were correct. Fig. 3 
serves to illustrate one of the most salient observations: 
that while such a positive correlation does exist, it is 
primarily due to the fact that poor fitness values are 
diagnostic of bad phase sets. In particular, the models 
yielding the best of the phase sets do not necessarily 
produce particularly good overall statistical values, and, 
indeed, the lowest residuals often are associated with 
unacceptable solutions that include phase cross-overs. 

The ability of inconsistently phased transforms to 
produce low overall values of QF makes these un- 
weighted statistics poor detection criteria. Presumably, 
the unfavorable influence of the relatively small number 
of reflections in the narrow cross-over bands between 
adjacent Babinet-related shells (which were discussed 
above) was vastly outweighed by the collective influence 
of the many reflections whose phases were consistent 
with those of their immediate neighbors. Nevertheless, 
the results presented in Table 1 suggest that the narrow 
shell of reflections that is directly involved in a phase 
cross-over region may be able to produce diagnostically 
bad shell-specific statistics, provided that a meaningfully 
large enough number of reflections is present in the 
shell, and provided that the shell is narrow enough to 
exclude large numbers of self-consistently phased ones. 
Hence, the success of the resolution-binning procedure 
may partly be due to the increased relative influence of 
the narrow shells of poorly phased reflections. 

4.1.2. Lattice coarseness. The second major problem 
associated with the use of a simple, resolution- 
independent residual arises from the coarseness of the 
model and from series termination error, both of which 
have a more pronounced effect on the higher resolution 
reflections. These effects have made it impossible for 
the statistics the highest resolution shells to become very 
favorable on an absolute scale, while the modeling of 
the virus in the lowest resolution shells has the potential 
to become quite accurate. 

For example, when the statistics for the automatically 
selected models are examined in detail by tabulating 
them in bins by resolution, as in Table 1, it is clear 
that minimization of an overall residual has produced 
particularly good agreement with the standard in the 
lowest resolution ranges (e.g., 0.03 to 0.13 in the in- 
nermost bin), while statistical agreement in the highest 
resolution ranges is much poorer (e.g., 0.58 to 0.74 in 
the outermost bin), though in every case, the level of 
agreement is considerably better than random (which 
would be 1.00 for both the Q~. and QI cos t  functions). A 
very similar distribution of scores was seen even when 
the averaging process was initiated with perfect phases 
(data not shown), indicating that the high values of the 
fitness scores were not merely consequences of poor 
phase choices. Consistent with this pattern, a very wide 
range of QIF values was seen in the lowest resolution 
shells prior to refinement, but only a much narrower 
range of scores was possible at higher resolution. 

Unfortunately, these artifacts of the modeling process 
made it more difficult to identify and select against 
poorly phased trials. The availability of a greater dy- 
namic range at very low resolution artificially increased 
the influence of the lower resolution data on the GA 
and on the refinement process, beyond the influence they 
would have exerted if the model had been less coarse, 
or if the Fourier series had not been truncated. With an 
overall residual, this built-in bias is unavoidable because 
any model coarse enough for efficient survey can provide 
only an approximate description of the higher resolution 
information. 

Fortunately, however, the simple decision to focus on 
narrower ranges of resolution addresses both of the major 
shortcomings of the overall unweighted refinement resid- 
ual, both by making the residual more sensitive to the 
presence of phase cross-over regions, and by providing a 
way to correct for the unintentional resolution-dependent 
weighting of the procedure. By regarding every bin as an 
equally important contributor to the selection criterion 
and scoring, it was possible to correct automatically 
for the biased treatment of reflections without explicitly 
needing to understand or to model exactly how that bias 
behaves as a function of resolution. Using that approach, 
any built-in statistical error in the model can be tolerated, 
provided that the bin-specific score of each trial depends 
only on how the trial ranks relative to the population of 
other trials subjected to similar constraints and pressures. 
The use of relative ranking per se as a fitness criterion in 
GA's already has several precedents in computer science 
(see Srinivas & Patnaik, 1994). 

4.2. Implications of the choice of residual for NCS 
refinement 

In summary, the picture which emerges from these 
and previous experiments is of broad bands of consis- 
tently phased reflections with low QF values, separated 



250 GENETIC ALGORITHM FOR PHASING OF ICOSAHEDRAL VIRUSES 

by narrower bands of inconsistent ones with higher 
associated QF scores. The simple minimization of an 
overall unweighted resolution-independent residual usu- 
ally is unable to eliminate most of the phase cross-over 
points, as such an improvement would require worsening 
the agreement in some of the extensive self-consistent 
regions as they moved toward global agreement. 

Curiously, the approaches to NCS refinement adopted 
by Rayment (1983) and by Arnold & Rossmann (1988) 
were diametrically different from the approaches found 
to be effective here. Thus, Rayment down-weighted the 
influence on the refinement of individual reflections for 
which IF,,b~d] and ]F~,~j~] disagreed, using the empirical 
weight ~exp = exp(-AIF] /IFob~dl), while Arnold & 
Rossmann achieved a similar down-weighting using 
the geometric mean between ~exv and Sim's weight 
(Sim, 1960). This approach was believed to facilitate 
refinement by making it easier for reflections with good 
statistical agreement (presumed an indicator of phase 
correctness) to overcome the influence of reflections with 
poorer statistical agreement. No doubt such an approach 
would be helpful in direct phase extension if the vast 
majority of reflections with low [A[FII were phased in a 
self-consistent way. In contrast, the approach developed 
here involves focusing on the statistical behavior of 
resolution shells, rather than on individual reflections; 
and it involves increasing, rather than decreasing, the 
influence of the data with poorest agreement. This latter 
approach may be necessary when the phase set already 
has been corrupted by the inclusion of mutually incon- 
sistent regions; when the aim is to identify problematic 
phase sets rather than repairing them; and when the 
refinement method is (like the GA) capable of taking 
steps which are uphill relative to the local gradient to 
obtain global improvements in the parameter set. 

4.3. Future directions 
Ultimately, the goal of this work is to find ways 

to determine high-resolution crystal structures with no 
previously determined known homologue and without 
depending on the availability of isomorphous heavy- 
atom derivatives. 

Experimental techniques for the collection of ex- 
tremely low resolution data from virus crystals are 
now being considered. Careful collection of the low- 
resolution data would require specific strategies to 
compensate for the large and rapidly varying Lorentz 
correction, including the use of an atypically large 
oscillation range and the positioning of each reflection 
as far from the projected spindle axis as possible. How 
well the explicit direct-space model of the virus could 
tolerate measurement errors and incomplete sampling 
of the transform has yet to be determined, though it 
certainly would be desirable to have collected all of 
the data. If the current method should prove insufficient 
when using authentic virus data, additional constraints 

are available, both in direct and reciprocal space, which 
could straightforwardly be incorporated into the penalty 
function of the GA. Once the experimental techniques 
have been satisfactorily worked out, calculations with 
experimentally observed structure-factor amplitudes 
should be forthcoming. 

Once the initial, low-resolution phase estimates have 
been obtained, and initial envelopes created, either by the 
ab initio survey methods presented above, or by means 
of cryoelectron microscopy, the task still remains of 
propagating phase and envelope information from a very 
low resolution (such as 24 A) to fairly high resolution 
(say 3 A). Direct NCS-based phase extension over such 
a wide resolution range has not yet been accomplished 
in practice, though it is expected to be possible. Some of 
the results presented above (particularly concerning the 
suppression of series termination errors) are pertinent to 
the phase-extension process, and suggest ways in which 
that might be accomplished. 

Used together, the coarse tetrahedral lattice parame- 
terization of trial structures and the matrix formulation 
for the structure-factor calculation are considerably more 
efficient than iterated direct-space averaging, as long as 
the resolution remains low. The opposite will become 
true as the low-resolution phases determined by the 
present approach are extended to higher resolution. In 
either approach, it is anticipated that information about 
the shape of the molecule from previous lower resolu- 
tion calculations could be used to create increasingly 
more detailed envelopes. In the coarse lattice model, 
the envelope would specify the locations of whatever 
number of lattice points (m) were permitted by the 
resolution of the data used. Reducing the volume of the 
envelope permits a finer sampling of the protein region, 
and a more accurate modeling of the virus, without 
requiring a corresponding increase in the number of 
Fourier terms. Recognizing that the directly generated 
phase information is more reliable at the lower resolution 
end of the current resolution sphere, as shown in Fig. 
4(c), propagation of information via increasingly detailed 
envelopes could furnish an appropriately cautious ap- 
proach to direct phase extension. Eventually, at higher 
resolution, after a switch is made to the Bricogne (1976) 
direct-space averaging method, it would seem a sensible 
precaution to initiate averaging with only the lower 
resolution portion of the transform specified by the 
coarse model, and to utilize the envelope principally to 
distinguish grid points whose values could be modified 
by averaging from those whose values were to be 
preserved intact. With these precautions, it should be 
possible to successfully extend the solutions to high 
resolution. 
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